Transport in Nanoscale Systems

نویسندگان

  • Dmitry S. Novikov
  • Leonid S. Levitov
چکیده

In part I of the Thesis charge ordering and transport in arrays of coated semiconductor nanocrystals (quantum dot arrays) are studied. Charge ordering in dot arrays is considered by mapping the electrons on the dots onto the frustrated spin model on the triangular lattice. A number of phases is identified for this system. Phase diagram is studied by means of the height field order parameter. Novel correlated fluid phase is identified, in which transport of classical charges exhibits correlated behavior. Freezing transitions into commensurate ground state configurations are found to be of the first order. A novel model of transport in disordered systems is proposed to account for experimentally observed current transients in dot arrays at high bias. This transport model yields a non-stationary response in a stationary system. The model proposes a particular power law noise spectrum that is found to be consistent with experiments. In Part II of the Thesis novel effects in Carbon nanotubes are predicted. These effects can be manifest in transport measurements. First, it is shown that a strong electric field applied perpendicularly to the tube axis can fracture the Fermi surface of metallic nanotubes and significantly reduce excitation gap in semiconducting nanotubes. The depolarization problem is linked to the chiral anomaly of 1+1 dimensional Dirac fermions. Second, coupling between a surface acoustic wave and nanotube electrons is proposed as a means to realize an adiabatic charge pump. Incompressible states are identified in the single particle picture, and the corresponding minigaps are found. Conditions for pumping experiment are identified. Third, electron properties of a nanotube in a periodic potential are considered. It is shown that when the electron density is commensurate with the potential period, incompressible electron states exist. Electron interactions are treated in the Luttinger liquid framework, and excitation gaps corresponding to incompressible states are found using the phase soliton approach. Thesis Supervisor: Leonid S. Levitov Title: Professor of Physics

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoscale Studies on Aggregation Phenomena in Nanofluids

Understanding the microscopic dispersion and aggregation of nanoparticles at nanoscale media has become an important challenge during the last decades. Nanoscale modeling techniques are the important tools to tackle many of the complex problems faced by engineers and scientists. Making progress in the investigations at nanoscale whether experimentally or computationally has helped understand th...

متن کامل

Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study

A comprehensive study of Schottky barrier MOSFET (SBMOSFET) scaling issue is performed to determine the role of wafer orientation and structural parameters on the performance of this device within Non-equilibrium Green's Function formalism. Quantum confinement increases the effective Schottky barrier height (SBH). (100) orientation provides lower effective Schottky barrier height in compa...

متن کامل

Molecular Dynamics Simulation of Water in Single WallCarbon Nanotube

The overall aim of this study is to calculate some water properties in the single wall carbon naotubes (SWCNT) and compare them to the bulk water properties to investigate the deviation of water properties inside the SWCNT from those in the bulk. Here some physical and transport properties of water molecules in the single wall carbon nanotube were reported by performing molecular dynamics (MD) ...

متن کامل

High Efficiencies in Nanoscale Poly(3-‎Hexylthiophene)/Fullerene Solar Cells

   A modified morphology was introduced for poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester (P3HT:PC71BM) bulk heterojunction (BHJ) solar cells by thermal and solvent annealing treatments in the presence of hydrophilic-hydrophobic block copolymers. Power conversion efficiency (PCE) plummet was prohibited during both thermal and solvent treatments for all BHJ devices modified wit...

متن کامل

Energy Dissipation and Transport in Nanoscale Devices

Understanding energy dissipation and transport in nanoscale structures is of great importance for the design of energy-efficient circuits and energy-conversion systems. This is also a rich domain for fundamental discoveries at the intersection of electron, lattice (phonon), and optical (photon) interactions. This review presents recent progress in understanding and manipulation of energy dissip...

متن کامل

Simulating molecular shuttle movements: towards computer-aided design of nanoscale transport systems.

Molecular shuttles based on the motor protein kinesin and microtubule filaments have the potential to extend the lab-on-a-chip paradigm to nanofluidics by enabling the active, directed and selective transport of molecules and nanoparticles. Based on experimentally determined parameters, in particular the trajectory persistence length of a microtubule gliding on surface-adhered kinesin motors, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007